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ABSTRACT

Analyses and numerical procedures are presented to investigate the
radiative interactions in transient energy transfer processes in gaseous
systems. The nongray radiative formulations are based on the wide-band
model correlations for molecular absorption. Various relations for the
radiative flux are developed; these are useful for different flow conditions
and physical problems. Specific plans for obtaining extensive results for
different cases are presented. The methods presented in this study can be
extended easily to investigate the radiative interactions in realistic flows

of hydrogen-air species in the scramjet engine.
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1. INTRODUCTION

In the past two decades, a tremendous progress has been made in the
field of radiative energy transfer in nonhomogeneous nongray gaseous systems.
As a result, several useful books [1-18] and review articles [19-26] have
become available for engineering, meteorological, and astrophysical
applications. In the sixties énd early seventies, radiative transfer analyses
were limited to one-dimensional cases. Multidimensional analyses and
sophisticated numerical procedures emerged in the mid-to-late seventies.
Today, the field of radiative energy transfer in gaseous systems is getting an
ever increasing attention because of its applications in the areas of the
earth's radiation budget studies and climate modeling, fire and combustion
research, entry and reentry phenomena, hypersonic propulsion and defense-

oriented research.

In most studies involving combined mass, momentum, and energy transfer,
the radiative transfer formulation has been coupled only with the steady
processes. The goal of this research is to include the nongray radiative
formulation in the general unsteady governing equations and provide the step-
by-step analysis and solution procedure for several realistic problems. The
specific objective of the present study is to investigate the one-dimensional
transient radiative transfer in a nongray gaseous system. In the future work,
the present analysis will be extended (in a systematic manner) to the problems

of combined transfer processes in chemically reacting flows.

For the present study, the information on band absorption and correlation
is summarized in section 2 and fundamental radiative flux equations are
presented in section 3. The basic formulation for the transient radiation is

given in section 4, and this is applied to a special case in section 5. The



solution procedures are described in section 6, and plans for obtaining

specific results are presented in section 7.

2. BAND ABSORPTION AND CORRELATIONS

The study of radiative transmission in nonhomgeneous gaseous systems
requires a detailed knowledge of the absorption, emission, and scattering
characteristics of the specific species under investigation. In absorbing and
emitting mediums, an accurate model for the spectral absorption coefficient is
of vital dimportance in the correct formulation of the radiative flux
equations. A systematic representation of the absorption by a gas, in the
infrared, requires the indentification of the major infrared bands and
éva]uation of the 1line parameters (line intensity, 1line half-width, and
spacing between the lines) of these bands. The line parameters depend upon
the temperature, pressure and concentration of the absorbing molecules and, in
general, these quantities vary continuously along a nonhomogeneods path in the
medium. In recent years, considerable efforts have been expended in obtaining
the 1ine parameters and absorption coefficents of important atomic and

molecular species [27-30].

For an accurate evaluation of the transmittance (or absorptance) of a
molecular band, a convenient line model is used to represent the variation of
the spectral absorption coefficient. The 1line models usually employed are
Lorentz, Doppler, and Voigt 1line profiles. A complete formulation (and
comparison) of the transmittance and absorptance by these 1line profiles is
given in [22-26]. In a parti¢u1ar band consisting of many lines, the
absorption coefficient varies very rapidly with the frequency. Thus, it
becomes very difficult and time-consuming task to evaluate the total band

absorptance over the actual band contour by employing an appropriate line



profile model. Consequently, several approximate band models (narrow as well
as wide) have been proposed which represent absorption from an actual band
with reasonable accuracy [22-26, 31-40]. Several continuous correlations for
the total band absorption are available in liteﬁature [22-26, 36-40]. These
have been employed in many nongray radiative transfer analyses with varying
degree of success [22-26, 41]. A brief discussion is presented here on the

total band absorption, band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration rotation
band can quite accurately be represented by the so-called "narrow band
models." For a homogeneous path, the total absorptance of a narrow band is
given by

Ay = wa, [1-exp(k X)1 dw (2.1)

where k = is the volumetric absorption coefficient, w is the wave number,
and X = py is the pressure path length. The limits of integration in Eq.
(2.1) are over the narrow band pass considered. The total band absorptance of

the so-called "wide band models" is given by

e <]

A=[ [1-exp(-k X)1 d(w-w,) (2.2)

-0

where the 1imits of integration are over the entire band pass and W, is the
wave number at the center of the wide band. In actual radiative transfer
analyses, the quantity of frequent interest is the derivative of Egs. (2.1)

and (2.2).

Four commonly used narrow band models are Elsasser, Statistical, Random
Elsasser, and Quasi-Random. The application of a model to a particular case
depends upon the nature of the absorbing emitting molecule. Complete

discussion on narrow bands models, and expressions for transmittance and



integrated absorptance are available in the 1literature [22-26, 31-33].
Detailed discussions on the wide band models are given in [22-26, 34-40]. The
relations for total band absorptance of a wide band are obtained from the
absorptance formulations of narrow band models by employing the relations for -

the vafiation of line intensity as [22-26, 37-40]
S;/d = (S/A exp{l-b |w-u |1/A} (2.3)

where Sj is the intensity of the jth spectral line, d is the line spacing, S
is the integrated intensity of a wide band, A, is the band width parameter,
and b, = 2 for a symmetrical band and b, = 1 for bands with upper and lower
wave number heads at Wy The total absorptance of an exponential wide band,
in turn, may be expressed by

wide [AN(U’B)]d(w-wo) (204)

- _ _ 1
Awﬁ)-MmMMO-EJ
band

where u = SX/A0 is the nondimensional path length, B8 = 2nyL/d is the line
structure parameter, vy is the Lorentz line half-width, and KN(u,B) repre-

sents the mean absorptance of a narrow band.

By employing the Elsasser narrow band absorptance relation and Eq. (2.3)
the expression for the exponential wide band absorptance ié obtained as
[25,16]

T
Au,B) =y + (1/m) fo [In ¢ +E (¢)] dz (2.5)
where ¢ = u sinh B/(cosh B- cos 2), y = 0.5772156 is the Euler's constant,
and E1(¢) is the exponential integral of the first order. Analytic solution
of Eq. (2.5) can be obtained in a series form as [25, 26]

. {~(A)"[SUM(mn) 1/Cn(B+1) "t (n-1)1 T} (2.6)

K(U’B) =

no~ 8

n



where -
SIM (mn) = £ [(n+m=1)1(2m-1)1¢™1/(2"(m1) 2]
m=0
A = - u tanhB, B = 1/coshB,
C = 2/(1+coshB) = 2B/(B+1).

The series in Eq. (2.6) converges rapidly. When the weak Tline approximation

for the Elsasser model is valid (i.e. B is large), then Eq. (2.5) reduces to
A(u) =y + In{u) + E; (u). (2.7)

In the linear 1limit, Egs. (2.5) and (2.6) reduce to A =u, and in the
logarithmic limit they reduce to A =y + In(u). It can be shown that Eq.
(2.5) reduces to the correct limiting form in the square-root Timit. Results
of Egs. (2.5) and (2.6) are found to be identical for all pressures and
pathlengths. For p > 1 atm, results of Egs. (2.5)-(2.7) are in good agreement

for all path lengths.

By employing the uniform statistical, general statistical, and random
Elsasser narrow band models absorptance relations and Eq. (2.3), three
additional expessions for the exponential wide band absorptance were obtained
in [25, 26]. The absorptance results of the four wide band models are
discussed in detail in [26]. The expression obtained by employing the uniform

statistical model also reduces to the relation (2.7) for large B.

Several continuous correlations for the total absorptance of a wide band,
which are valid over different values of path length and 1line structure
parameter, are available in the literature. These are discussed, in detail,
in [22-26, 37-40] and are presented here in the sequence that they became

available in the 1literature. Most of these correlations are developed to



satisfy at least some of the 1imiting conditions (nonoverlapping line, lienar,
weak 1line, and strong line approximations, and square-root, large pressure,
and large path length 1imits) for the total band absorptance [23-26]. Some of

the correlations even have experimental justifications [22,35].

The first correlation for the exponential wide band absorptance (a three
piece correlation) was proposed by Edwards et al. [34, 35]. The first
continuous correlation was proposed by Tien and Lowder [22], and this is of

the form

Alu,B) = In(uf(t){u+2)/[u+2f(t) 1}+1) (2.8)
where

f(t) = 2.94[1-exp(-2.60t)], t = g/2.

This correlation does not reduce to the correct limiting form in the square-
root limit [23,26], and its use should be made for B > 0.1l. Another
continuous correlation was proposed by Goody and Belton [39], and in terms of

the present nomenélature, this is given by
A(u,B) =2 In{l+u/[4+(nu/at) 12}, g = 2t. (2.9)

Use of this corelation is restricted to relatively small B values [23-26].
Tien and Ling [40] have proposed a simple two parameter correlation for

A{u,B) as
A(u) = sinh™l (u) (2.10)

which is valid only for the 1limit of large B. A relatively simple

continuous correlation was introduced by Cess and Tiwari [23], and this is of

the form



A(u,8) = 2 In(1+u/ (2+[u(1+1/3) 14 2}) (2.11)
where B = 4t/n = 2B/n. By slightly modifying Eq. (2.11), another form of

the wide band absorptance is obtained as [25, 26]

R(u,B) = 2 In(1+u/{2+Lulc+n/2)11/2)] (2.12)

where

Equations (2.11) and (2.12) reduce to all the 1imiting forms [23]. Based on
the formulations of slab band absorptance, Edwards and Balakrishnan [37] have

proposed the correlation
A(w) = Tn(u) + Ej(u) + v + 3 = Egu) (2.13)

which is valid for large 8. For present application, this correlation
should be modified by using the technique discussed in [25, 26]. Based upon
the formulation of the total band absorptance from the general statistical

model, Felske and Tien [38] have proposed a continuous correlation for

Alu,B) as
Ru,B) = 2E,(tp,) + E;(p,/2) - E;[(p /2)(1+2¢)]

+ Inlte )2/(1+20)] + 2y (2.14)

where
o, = {H/WIL + (/w1 V2



The absorptance relation given by Eq. (2.7) is another simple correlation
which is valid for all path lengths and for t = (B/2) > 1. The relation of
~ Eq. (2.6) can be treated as another correlation applicable to gases whose
spectral behavior can be described by the Elsasser model. In [26] Tiwari has -
shown that the Elsasser as well as random band model formulations for the

total band absorptance reduce to Eq. (2.7) for t > 1.

Band absorptance results of various correlations are compared and
discussed in some detail in [25, 26, 41]. It was found that results of these
correlations could be in error by as much as 40% when compared with the exact
solutions based on different band models. Felske and Tien's correlation was
found to give the least error when compared with the exact solution based on
the general statistical model while Tien and Lowder's correlation'gave the
least error when compared with the exact solution based on the Elsasser model.
The results of Ce§s and Tiwari's correlations followed the trend of general
statistical model. Tiwari and Batki's correlation [Eq. 2.6 or 2.7] was found
to provide a uniformly better approximation for the total band absorptance at
relatively high pressures. The sole motivation in presenting the various
correlations here is to see if their use in actual radiative processes made

any significant difference in the final results.

In reference 41, use of several continuous correlations for total band
absorptance was made to two problems to investigate their influence on the
final results of actual radiative processes. For the case of radiative
transfer in a gas with internal heat source, it was found that actual center-
Tine temperature results obtained by using the different correlations follow
the same general trend as the results of total band absorptance by these
correlations. From these results, it may be concluded that .use of the Tien

and Lowder's correlation should be avoided at lower pressures, but its use is



justified (at moderate and high pressures) to gases whose spectral behavior
can be described by the regular Elasasser band model. For all pressures and
path length conditions, use of the Cess and Tiwari's correlations could be
made to gases with bands of highly overlapping lines. In a more realistic
problem involving flow of an absorbing emitting éas, results of different
correlations (except the Tien and Lowder's correlation) differ from each other
by less than 6% for all pressures and path lengths. Use of Tien and Lowder's
correlations is justified for gases like CO at moderate and high pressures.
For gases like CO,, use of any other correlation is recommended. While Felske
and Tien's correlation is useful for all pressures and path lengths to gases
having random band structure. Tiwari and Batki's simple correlation could be

employed to gases with regular or random band structure but for P > 1.0 atm.

3. RADIATIVE FLUX EQUATIONS

For many engineering and astrophysical applications, the radiative
transfer equations are formulated for one-dimensional planar systems (Fig.
3.1). For diffuse boundaries and in the abscence of scattering, expressions

for the radiative flux and its derivative are given as [8]

dpalma) = 2 By, E3lmy) = 2 By, Eglg, = )

T T
+20f M (1) Eyls, - t)dt = [ O e (DE(t - 1,)dt] (3.1)
0o T
A
and
dapa
T T 2B Ba(m) 2By Bplty - W)

T
+ 2[jo°x ey, (VE; (|7 —‘t')dt (3.2)



9a

IPIT 77T T I 77777777 777 77777777777, 77

y coso I;: (y) Boundary 2

Y Boundary 1

}///////////////f//////////// 77777777

Figure 3.1

Plane radiating layer between parallel boundaries.
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where
y L
T, = fo ky dy » Ty = jo k, dy (3.3a)

1
E (1) =/ a"Z et g (3.30)
. 0

In the preceding equations, E (t) are the exponential integral functions, and
T, and Ton represent the optical coordinate and optical path, respectively.
The quantitites BDL and Bzx represent thé spectral surface radiosities and
for nonreflecting surfaces, le =15 = E) @ etc. Thus, for non-
reflecting boundaries, Egs. (3.1) and (3.2) are expressed in terms of the(wave

number as (see Appendix A)

qu(Tw) €0 " G2

T T
+ 2 Uo“’ Flolt) By (t-tldt - fT:‘*’ Fo(t) E, (t-7 )dt] (3.4)
and
dqu
- a':r—}:— = -2 [Flw(tw) + FZw(Tw)]
+ 2 [IT“ F, (t) E. (7 -t)dt + f1°“ Fo (t) E,(t-7 )dt] (3.5)
o lw 1 T 2w 1'% .
where

Flw(t) = em(t) - ey FZw(t) = ew(t) - ey,

Equations (3.4) and (3.5) are the general equations for one-dimensional
absorbing-emitting medium with diffuse non-reflecting boundaries. For nongray

analyses, it 1is often convenient to replace the exponential integrals by
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appropriate exponential functions [6, 8]. Upon employing the exponential

kernal approximation [8]
Ez(t) = % exp (- % t); El(t) = g- exp (-% t)

Eqs. (3.4) and (3.5) are expressed in physical coordinatates as

NRw (y) = €10 T ®2u

/

+

Nw Nw

z Fle (z) k, exp [- % k, (¥y-2)] dz
L .

-3 Fy, (2) k, exp [- 5k (22y)] dz (3.6)
y

ddg,,
T = " 2 IR, () + Fo(y)]

y
* -z fo Fip (2) kf, expl- % k, (y-z)1dz

+9fLF()k2 -3k (z-y)1d (3.7)
T T K &P 7k, (Z7y)ldz .

where z is a dummy variable for y. However, by differentiating Eq. (3.6)

directly, there is obtained

dqu 3
dy =T kw [Flw(y) + sz(y)]

y
* zgr fo Flo (2) kf, expl- % k, (y-2)1dz

+9fLF (z) k2 expl~ 3 k (z-y)1d (3.8)
Wwaz wexp -szy Z .



12

The slight difference in Eqs. (3.7) and (3.8) should be noted. This is a
consequence of using the exponential kernal approximation. If one has to make

a decision as which equation to use, it is recommended to use Eq. (3.8).

The total band absorptance, as given by Eq. (2.2), can be expressed in a

s]ightly'different form as

Aly) = [ [1 - exp(- k., y)] dw ~ cm-l (3.9a)

0

where both kw and w have units of cm~l. Differentiation of Eq. (3.9a) gives

A(y) = [ Kk, exp(= k) do~cn (3.9)
0
and
[ - 2 2 "3
A'(y) = [ - k, exp(= k, y) dw~cm (3.9¢)
o

Equations (3.9) are employed to express Egqs. (3.6) and (3.8) in terms of the

band absorptance.

The total radiative flux is givea by

ap(y) = [ qg ly) dw (3.10)
0
such that
dq,(y) = dq ®
R _ Rw _d
& - fo o dw I fo g, (3.11)
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Upon substituting Eq. (3.6) into Eq. (3.10) and Eq. (3.8) into Eq. (3.11)

there is obtained for a multiband gaseous system

aply) =ey - e,

3 0 y 3
+ 5 1’21 IAwi {fo Floi(?) ki expl- 5k :(y-2)1dz

L

- fy Foyi(2) K i expl- % ki (z-y) Idz}do, (3.12)
-—— "3 1‘21 wai kwi[Flun' (y) + lem.(yl)]dwi
g M Y 2 3
tr kL fAm. {fo FluilZ) Kyi expl- 5k ;(y-2)]dz
+fLF (z) k2 [- 3k .(z-y)1dz}d (3.13)
y2w1'z wi EXPLT 7 K127y ) 1dzidw, .

It should be pointed out that the following relations have been used in

obtaining Egs. (3.12) and (3.13)

@

/ elwdw=e1;f ey, dv = e,
0 0

[ { F1,(2) Kk, expl- 5 k (y-z)Idz}dw
0 0

20 R (2) k. expl- 3k L(y-2) dz}d
= [z . expl- .(y-z) dz}dw,
ie1 Awi o Lwi wi 2 "wi i

where n represents the number of bands in a multiband system.
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By utlizing the definitions of the band absorptance and its derivatives
as given by Egs. (3.9) and evaluating the value of the Planck function at the

center of each band, Egqs. (3.12) and (3.13) are expressed as

qR(y) = el = ez

3 0 F @A B y-nu
z) A} y-z)1dz
-21'=1 0 l("01' iz
IL (z) A% 3 1dz} (3.14)
- F z) AL (z=y)ldz 3.14
y 2woi i 2
A9 (y) 3 R, ) +F, 1) k. du)
. = z y) + y . dw.
W2 gy ey T 2y pwi W1
9 M Y 3
+> = {[ F (z) A'S [5 (y-2)1dz
T o1 o 1oy 17277
L -
+ [ Foy (2) A% [5 (z-y)1dz} (3.15)
Yy 01

where Woi represents the center of the ith band.

Equations (3.14) and (3.15) are in proper form for obtaining the nongray
solutions of molecular species. However, in order to be able to use the band
model correlations, these equations must be transformed in terms of the
correlation quantities defined in Eq. (2.4). The following quantities,
therefore, are needed for the transformation

u = (S/Ao) py; u, = (S/Ao) PL; PS = wa k,, dw (3.16)

Now, by using the definition A = A/A , Eq. (3.9b) is written as
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Aiy) = & (AT == 28 - wyy/ng ~ on”?
0
Thus,
A'(y) = A, Eg)(l_yl - Ao[%“—)% =P S(T) A'(u) (3.17a)
Similarly
AT y) = [P S(MI? (1/A) R (u) (3.17b)

The dimensions of both sides in Egs. (3.17a) and (3.17b) agree with the
dimensions given in Egs. (3.9b) and (3.9c). By employing the definitions of

" Egs. (3.16) and (3.17), Egs. (3.14) and (3.15) are expressed as

qR(U) = el - 32

u,

¢33 oA, U R, ) BBy -]
7.4 Roi lo, Uil Ay by luy = Uit duy
i=1 o] i
- fu°‘ Fooo(u!) AL [ (u! - u,)] dut) (3.18)
g, 2w iR RZN i i .
1
dap(u) 3"
qu— "7 .5 Aoq [Fp (W) + Fyp(udl
i=1 i
9 n U1- 1 e R 3 [ ]
g 151 Ao {fo Flwi(u ) A" [,z (uj - ui)] duj
+ fu°i F, (u') A"} [3 (u; = u,)]ldu,} (3.19)
G 2w i 7YY i i .

1

where u' is the dummy variable for u and A'(u) = dA/du. It should be noted

that F, ~and F, ~ in Egs. (3.18) and (3.19) represent the values of
i i
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Flw and F2w at the center of the ith band, and dqR/dy = (dqR/du)(du/dy) =
[p S(T)/AOJ (dqR/du).

By defining the new independent variables as
g =ulu, =y/L; & =u'fu, =z/L (3.20)
Eqs. (3.18) and (3.19) can be expressed as

R (B)=e - &

3 . & Py R 3 ' f
tz 2 Poi Yoi U Fio.(8') Ay 5 u, ;(E-E")1dE
i=1 0 i
1 ' Rt 3 ' '
- fg szi(g ) Ay [ug, (8'-E)1dE"} (3.21)
Tzl {[Flwi(i) + szi‘i)] (A Uyi)}

+2 g A u2 {fg F, {g') A": [3 u_.(E-g')1de’
T -1 oi. “oi o lmi i *Z Toi'7-

1
' A 3 t 1
+ fg Foui (B') A'Y [3u 4 (8'-E)1de"} (3.22)

where again A'(u) dentoes the derivative of A(u) with respect to u, and

dqR/du = (dqR/dE) (d€/du) = (l/uo) (dqR/di).

Equations (3.18) through (3.22) allow us to make use of the band model
correlations for the wide-band absorptance because these correlations are
expressed in terms of u and B. However, it 1is often desirable and
convenient to express the relations for gg and div gp which 'on1y involve

A(u) and A'(u) but not A''(u). This is accomplished by integrating the



17

integrals in the expressions for gp and div gp by parts. This results in
simpler integrals. Upon performing the integration by parts on the integrals
in Egs. (3.21) and (3.22), the equations can be expressed in alternate forms

as (see Appendix B)

aRR(E) =& - &

n g
1 1 n 3 1 '
* .z A {jo [dewi(i J/AE'T A, [5u . (E-E") dE
! 03
+ ] [de, (£')/de'] A, [5u . (E'-£)1dE"} (3.23)
g i

M

(8 {f [de  (£')/dg'] A! [ u_, (e-g')1de’
dg ?101 o, i "2 “oi

1
[ 17 Jt 3 ' '
Ig [deu%(é )/de'] A% [ u o (E'-E)1dE'}  (3.24)
It should be noted that Eq. (3.24) can be obtained directly by differentiating
Eq. (3.23) with respect to & wusing the Leibnitz formula. This is shown in

Appendix B.

Equations(3.21), (3.23), and (3.24) are the most convenient equations to

use when employing the band-model correlations in radiative transfer analyses.
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4, BASIC FORMULATION FOR TRANSIENT PROCESSES

The interaction of radiation in transient transfer processes has received
very little attention in the literature. Yet, the transient approach appears
to be the Tlogical way of formulating a problem in general sense for. elegant
numerical and computational solutions. The steady-state solutions can be

obtained as limiting solutions for large times.

A few studies available on radiative ineractions reveal that the
transient behavior of a physical system can be influenced significantly in the
presence of radiation [42-45]. Lick dnvestigated the transient energy
transfer by radiation and conduction through a semi-finite medium [42]. A
kernal substitution technique was used to obtain analytic solutions and
display the main features and parameters of the poblem. Doornink and Hering
studied the transient radiative transfer in a stationary plane layer of a
nonconducting medium bounded by black walls [43]. A rectangular Milne-
Eddington type relation was used to describe the frequency dependence of the
absorption coefficient. It was found that the cooling of the layer initially
at a uniform temperature is strongly dependent on the absorption coefficient
model employed. Larson and Viskanta investigated the problem of transient
combined Taminar free convection and radiation in a rectangular enclosure
[44]. It was demonstrated that the radiation dominates the heat transfer in
the enclosure and alters the convective flow patterns significantly. The
transient heat exchange between a radiation plate and a high-temperature gas
flow was investigated by Melnikov and Sukhovich [45]. Only the radiative
interaction from the plate was considered; the gas was treated as a non-
participating medium. It was proved that the surface temperature is a

function of time and of Tongitudinal coordinate.
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The objective of this study is to investigate the interaction of nongray
radiation 1in transient transfer processes in a general sense. Attention,
however, will be directed first to a simple problem of the transient radiative
exchange between two parallel plates. In subsequent studies, the present -
analysis and numerical techniques will be extended to include the flow of
homogeneous, nonhomogeneous, and chemically reacting species in one- and

multi-dimensional systems.

The physical model considered for the present study is the transient
energy transfer by radiation in absorbing-emitting gases bounded by two
parallel gray plates (Fig. 4.1). In general, Ty and T, can be a functiop of
time and position and there may exist an initial temperature distribution in
the gas. It is assumed that the radiative energy transfer in ‘the axial

direction is negligible in comparison to that in the normal direction.

For radiation participating medium, the equations expressing conservation
of mass and momentum remain unaltered, while the conservation of energy, in

general, is expressed as [8]
DT _ . DP _ As
P cp i div (k grad T) + BT'UE + u ¢ - div dp (4.1).

where B 1is the coefficient of thermal expansion of the fluid and ¢ is the
Rayleigh dissipation function. For a semi-infinite medium capable of

transferring energy only by radiation and conduction, Eq. (4.1) reduces to

3T _ _2q

where q 1is the sum of the conductive heat flux Qe = - k (dT/dy) and the
radiative flux gp. For the physical model where radiation is the only mode of

energy transfer, the energy eguation can be written as
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Figure 4.1 Physical model and coordinate system.
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8T _ _ "R
pCp—aT“ -a—y— (4.3)

Use of this simplified equation is made to investigate the transient behavior

of a radiation participating medium.

As pointed out in the previous section (Sec. 3), Egs. (3.21) and (3.23)
are convenient equations for the radiative flux. Equations (3.22) and (3.24)
are two expresssions for the div qgp(y), but Eq. (3.24) is preferred because it
only involves the first derivative of A and avoids singularities in the

large path length limit.

Upon defining nondimensional radiative heat flux by
Q(2,1) = qplE,t)/[e (1) - e, ()] (4.4)

Eq. (3.21) can be written as

3 7 & =, .3
Q(g,t) =1+ TOAL U {J g, (B0 A [Zu o (E-E')]de
i=1 0
1 - .3
- fg Cy (€,0) AL [z u . (2'-8)1dE'}  (4.5)
where

Equation (4.5) provides the general expression for the radiative flux in the
nondimensional form. A similar nondimensional form can be obtained also from

Eq. (3.23).

By defining ¢ (£,t) = T(P,,t)/To with To representing some constant
reference temperature, Eqs. (4.3) and (3.24) can be combined to yield the

energy equation in nondimensional form as
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-2 (g0t =3 3 {IE (',t) Ay [3u (5-£")d'
’ T Y el 5 E A g gy
1 3 A
- IE i (E'5t) Ay [zu . (E'-E)IdE"} (4.6)

where
byi (E51) = (PSL(TV[0 e (E,£)/0E]/(p Cp T /t )}

The time t in Eq. (4.6) is defined as £ = t/t, with t, representing some
characteristic time scale of the physical problem; however, for the sake of
convenience, the asterisk is left out here as well as in further developments.
From the definitions of ¢(£,t) and ¢wi(§,t), it should be noted that Eq.
(4.6) 1is a nonlinear equation in T(E,t).. Equation (4.6), therefore,
represents a general case of the transient energy by radiation between two
semi-infinite parallel plates. A similar expression can be obtained also by

combining Egs. (4.3) and (3.22).

5. A SPECIAL CASE OF TRANSIENT INTERACTION

As a special case, it is assumed that the entire system initially is at
the fixed (reference) temperature T,. For all time, the temperature of the
upper plate is maintained at the constant temperature equal to the reference
temperature, i.e., T) ='To. The temperature of the lower plate is suddenly
decreased to a lower but constant temperture, i.e., T; < Typ. The problem,
therefore, is to investigate the transient cooling rate of the gas for a step

change in temperature of the lower plate.

Since small temperature differences have been assumed and the absorption
coefficient has been taken as independent of temperature one may comploy

additionally the linearization,
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ewi(T) - ewi(Tw) = (d ew‘i/dT)Tw (T"Tw) (5.1)

where again the subscript i refers to the ith band such that w3 is the wave
number location of the band and T, represents the temperature of the reference
wall which could be either Ty or T,. For the special case considered, since
we are interested in investigating the transient behavior of the gas because

of a step change in temperature of the lower plate, T, is taken to be equal to

Ty. Thus,
ei (B:t) = ey(0,) = (d e /D)y (T-T)) (5.2a)
ewi(l,t) - ewi(o,t) = (d em./dT)T1 (TZ-Tl) (5.2b)
ewi(a,t) - ewi(l,t) = (d ewi/dT)T (T-T2) (5.2¢)

Note that Eq. (5.2c) is obtained by subtracting Egq. (5.2b) from Eq. (5.2a).

Also, for linearized radiation,

"-atrT-37 (5.3)
- 4 _ 4 _ 3 - 4
Thus, e =0 T1 s €)= 0 T2 = o (4 T1 T2 3 Tl) such that

e, -e,=4o Ti (T T,).

It should be pointed out that for a single-band gas, the linearization is
not required because the temperature distribution can be obtained either by
combining Eqs. (3.22) and (4.3) or from Eq. (4.6) and the radiative heat flux
can be calculated from Egs. (3.21), (3.23), or (4.5). However, for the case
of multiband gases and for systems involving mixtures of gases, it is

convenient to employ the 1linearization procedure in order to use the

information on band model correlations. The following definition are useful
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in expressing the governing equations in linearized forms:

Nli = (Ptm/p Cp) Kli . Kli = Si(T) (d ewi/dT)Tl (5.4b)
n

N1 = (P tm/p Cp) K1 . Kl = 151 Kl,i {(5.4¢)

Mig = (tm/L o cp) Hli . Hli = Aoi (T) (d ewi/dT)Tl (5.4d)
n

M1 = (tm/L p cp) H1 . H1 = iil Hli (5.4e)

Mpg Uoi = Nij o U o5 Hyy = PLKyy (5.4f)

where Hy, Ky, Ny and M; represent the values of H, K, N and M evaluated at the
temperature T;. As explained in Refs. 8 and 23, these quantities represent

the properties of the gaseous medium.

By employing the definitions of Egs. (5.2) - (5.4), relations for the

radiative flux, as given by Eqs. (3.21) and (3.23), are expressed as

- 3 n g 1 rel 3 1 t
AE,1) = 1= (/80 Ty) T ugy Hyg {fo. 8(2',t) ALy u ;(2-€')1dg
1 [} =3 1 ]
+ Ia [1 - 62", 0)] R[5 u; (€' -E)1dE"} (5.5a)
and
ety =1 - (a ot 3 b0 LD 73y (g
’ 1,2, " T 2 o
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1
- ae(g.gt) = r3 ' '
fg T A.i[-z um.(a 5)]d§ } (5.5b)

Thus, the expressions for the heat flux at the lower wall are given by

1

_ 3 n [l n 3 1 ]
Q(0,t) = 1 - (3/8 ¢ T)) 12 uoi Mg Io [1-6(g',t)IA (5 u ; E')dE (5.6a)

1
and
1

n
00,t) =1+ (/40 T)) T H. |

ae(g' ’t) iy
i=1 0 O

3 Ty gp
A3 u; 1) (5.6b)

It should be pointed out that Egs. (5.5a) and (5.6a) are convenient forms for
the optically thin and general solutions while Egs. (5.5b) and (5.6b) are
useful for solutions in the large path length limit. Once the solutions for

8(Z,t) are known from the energy equation, the appropriate relations for the

heat flux can be obtained from Eqs. (5.5) and (5.6).

By employing the definitions of Eqs. (5.2) - (5.4), a combination of
Eqs. (3.22) and (4.3) provides one form of the energy equation and Eq. (4.6)

is transformed to obtain another form; these are expressed as

36(E,t)

3y =

--2 % w 2 {f‘E o(g',t) A!'[5 u_. (E=E') 1dg’

T TF L2 e YRR Ryl oy
1

+[ [e(g',t) - 11 A"I[5 u_,(g'-8) Jag") (5.7a)
g

and
0y 3o {fg L8 B3y (e-g) e
ot 2 .. i 28" i 2 oi

i=1 0
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K'.{% u (2'-2)1dE"'} (5.7b)
(0] ]

The initial and boundary conditions for Eq. (5.7) are specified as
0(£,0) =1 ; 6(0,t) =0 ; 6(1,t) =1 (5.8)

The parameters in Eq. (5.7) are N; and u,. For a given gas, the parameters
are the gas pressure and the temperature of the lower wall. Equation (5.7b)

is the convenient form for solutions in the large path length limit.

6. METHOD OF SOLUTIONS

For the general case, the.temperature distribution is obtained from the
solution of the energy equation, Eqs. (5.7). Once ©(E,t) 1is known, the
radiative heat flux is calculated by using the appropriate form of Egq. (5.6).
Before discussing the solution procedure for the general case, however, it is
desirable to obtain the limiting forms of Egs. (5.5) and (5.7) in the
optically thin and large path length limits and investigate the solutions of

resulting equations.
6.1 Optically Thin Limit
In the optically thin 1limit [8, 23], A(u), =u, A'(u) =1, and
A''(u) = 0. In this limit, therefore, Eq. (5.7a) reduces to

d0(E,t) -3 N =
SEE P3N 6(Et) -5 Ny =0 (6.1a)

From an examination of Eq. (6.l1a) along with the definitions given in Eq.
(5.4), it is evidient that in the optically thin 1imit the temperature distri-
bution in the medium 1is 1independent of the &- coordinate. This 1is a

charateristic of the optically thin radiation [8, 23]. Thus, Eq. (6.la) can
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be written as

de(t)
dt

3
+ 3 Nl(t) a(t) -3 Nl(t) = 0; 6(5,0) =1 (6.1b)

Since gas properties are evaluated at known reference conditions, N s

essentially constant, and solution of Eq. (6.1b) is found to be
8(t) =4[1 + exp(- 3 N;1)] (6.2)

In the optically thin limit, Eq. (5.7b) reduces to

n g 1

e 1
= g.( b3 Nli) { 9.1%2431 dg' - |
i=1 0 g

_00(E,t)
ot

26(&',t)

5 dg'} (6.3a)

A differentiation of Eq. (6.3a) with respect to & (by using the Leibnitz's

rule) results in

gz-[99é%431 + 3N, (5, 1)1 =0 (6.3b)
or
69(%,1:) + 3 Nl 9(5,'{:) = C(t) . (5.3C)

The constant of integration C(t) is evaluated through the combination of Egs.
(5.8) and (6.3a) and is found to be C(t) =-§ Ni. A substitution of this in
Eq. (6.3c) gives Eq. (6.la) for which the solution is given by Eq. (6.2).
Thué, as would be expected, both general forms of the energy equation reduce

to the same equation in the optically thin limit.

In the optically thin limit Eqs. (5.5a) and (5.5b) respectively reduce to

g 1
Q(E,t) = 1 - [3/(86T] (PLK)) {f o(g',t)de’ + [ [1-6(g',£)1dE')  (6.4a)
0 g

and
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3 € a0 1
Q(g,t) = 1 - [3/80T)] (PLK)) {f =T (E-8')dE’ + J
o g g

86
og"

(¢'-g)dg'}  (6.4b)
Through integration by parts, it can be shown that Eq. (6.4b) reproduces Eq.
(6.4a). By noting that, in the optically thin limit, 6(E,t) = 6(t), Egs.

(6.4) can be expressed as
Q(E,t) = 1 - [3/(80T3)] (PLK;) [(1-8) + (2-1) 0(t)] (6.5)

It should be pointed out that Eq. (6.5) can be obtained directly from Eq.
(6.4b) without performing the inegration by parts. The heat transfer from the

lower surface in the optically thin limit, therefore, is given by
Q(0,) = 1 - [3/(86T)] (PLK,)[1 - 6(t)] (6.6)

The result of Eq. (6.6) can be obtained directly by letting & = 0 1in either
of Egs. (6.4). The relation for 6(t) in Eq. (6.6) is obtained from Eq.
(6.2). Thus, evaluation of the temperature distribution and radiative heat

flux in the optically thin limit does not require numerical solutions.

6.2 Large Path Length Limit

In the large path length limit (i.e., for uy; >> 1 for each band), one
has A(u) = &n(u), A'(u) = 1/u, and A''(u) = - 1/u® [8, 231. ~ Thus, in the

large path length limit, Eq. (5.7a) reduces to

06(E,t)

3
5T + 3 N1 o(g,t) 2-N1

dg’ ' dg’
=M, {J o(g',t) + [ [e(e',t) - 1] } (6.7a)
1% (2-£)2 & (' -£)2

It should be noted that for any fixed value T; and a given gas, N; and M, are
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constants; but, ©(£,t) does depend on £. For a given gas and with known
values of Ty and t, the solution of Eq. (6.7a) can be obtained by spécifying
Ty. Equation (6.7a) involves singular integrals With Cauchy type kernals and,
therefore, a closed form solution does not appear to be possible; numerical
solutions, however, can be obtained by the variation of parameter technique.
Because of the singular nature of integrals, Eq. (6.7a) is not a convenient

equation for the large path Tlength limit solutions.

In the large path length 1imit, Eq. (5.7b) reduces to

3t (6.7b)

20(E,t) _ _ fl 26(',t)  dE’
1 o Y

Equation (6.7b) 1is a convenient form for solution in the large path length
Timit. An analytical solution of Eq. (6.7b) may be possible, but numerical

solution can be obtained quite easily.

In the 1large path 1length 1limit, Egs. (5.5a) and (5.5b) reduce

respectively to

1 1
- _ 3 . dgl _ dgl
QE,t) = 1 - (1/4T) “1”0 82", t) Tz fg L (6.8a)
and
UELL) = 1 - (1/40T2) - {fa 88,8 )3y (e-e')lae
Sl °11,=1 1§ T 7 oi

RRTICIRY
(e t)

anl3 u . (€'-€)1dE'}  (6.8b)
g

The expressions for dimensionless radiative heat flux from or to the wall

are obtained by setting & = 0 in Egs. (6.8) as
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3, dg'
Q0,t) = 1 - (H/40T]) [ [1 - 6(',t)] % (6.9a)
0

and

] 3, 0 1 ae(e’,t)
Q(0,t) = 1 (1/40T}) DALY J — 5

(3 u, €)' (6.9b)
i=1

Thus, once the temperature distribution is known from solutuions of Eq. (6.7),
the wall heat flux can be calculated by using the corresponding form of Egs.

(6.9).

6.3 Numerical Solutions of Governing Equations

General solutions of Egs. (5.7a) and (5.7b) are obtained numerically by
employing the method of variation of parameters. For this, a polynomial form

for ©(%,t) is assumed in powers of & with time dependent coefficients as
o(g,t) = £ ¢ (t) &" (6.10)

By considering only the quadratic solution in &, and satisfying the boundary

conditions of Eq. (5.8), one finds
_ 22 2
o(E,t) =& + g(t) (E-&7) (6.11)

where g(t) represents the time dependent coefficient. At t = 0, a combination

of Egs. (5.8) and (6.11) yields the result.
g(0) = (1-82)/(2-2) (6.12)

Also, from Eq. (6.11) there is obtained

00(g,t) _ (E-EZ) dg(t)

2,
3t T (e-¢") g‘(t) (6.13)
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and
20(E,t)

=28+ g(t) (1-28) (6.14)

Equations (6.11) - (6.14) are employed to obtain specific solutions of Egs.
(5.5) and (5.7).

By substituting Egs. (6.11) and (6.13) in Eq. (5.7a), there is obtained
g'(t) + G;(E) g(t) = G,(E) (6.15)

where the integral functions GI(E) and GZ(E) are defined in Appendix C. The

solution of Eq. (6.15) is given by

g(t) = c exp[- 6;(E)t] + G,(E)/6;(¥) (6.16a)

Since at t = 0, g(t) = g(0), then ¢ = g(0) - GZ(E)/Gl(i). Thus, Eq. (6.16a)

becomes

g(t) = [g(0) - G,(E)/G(E)] expl- G (E)E] + 6,(£)/6,(E) (6.16b)

where g(0) is given by Eq. (6.12). The integrals in functions Gl(g) and
Gz(é) can be evaluated easily by numerical means, after substituting the

relation for A''(u).

A substitution of Eqs. (6.11), (6.13) and (6.14) into Eq. (5.7b) results

in
g'(t) + G5(E) g(t) = G,(¥) (6.17)

where the integral functions G3(£) and G4(§) are defined in Appendix C. The

solution of Eq. (6.17) is found to be

g(t) = [g(0) - 6, (£)/G4(E)] expl- G4(E)t] + G,(E)/G4(E) (6.18)
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where again g(0) is given by Eq. (6.12).

The solutions of Eqs. (5.7a) and (5.7b) can be expressed in a convenient
form as

gl(t),

2
g, (t) ] (g-£%) (6.19)

o(g,t) = £2 + [

In Eq. (6.19), gy(t) is given by Eq. (6.16b) and is used for the solution of
Eq. (5.7a) and gp(t) s given by Eq. (6.18) and is used in obtaining the
solution of Eq. (5.7b). The both approach should result in the same final

solution.
For the steady state case, the solution again is given by Egq. (6.19), but
functions gy(t) and g,(t) are no longer a function of time and are gfven by
9y = 6,(E)/G,(8); g, = G,(2)/G4(2) (6.20)
The solutions for the steady case are available in the Titerature and are
useful in comparing the results of this study in the limit of t » =,

The expressions for the nondimensional radiative flux are obtained from a

combination of Eqs. (5.5), (6.11) and (6.14) such that

and

Q(E,t) =1 - G7(§) gz(t) - 68(5) (6.21b)

where 65(5) through Gg(a) are defined in Appendix C, and q;(t) and qp(t)
are given respectively by Egs. (6.16b) and 6.18). Consequently, the

expressions for the radiative heat flux at the lower wall are obtained as
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Q(0,t) =1 + Gg ql(t) - Gl0 (6.22a)

and

Q(0,8) = 1+ Gy, g,(t) + Gy, (6.22b)

where Gg through G;, are defined in Appendix C and are not function of E.
It should be noted that the solutions presented in Eqs. (6.21) and (6.22)
require the solution of the energy equation as given by Eqs. (6.19)

6.4 Numerical Solutions of Large Path Length Equations

As mentioned earlier, Eqs. (6.7b), (6.8b) and (6.9b) are the most appro-
priate equations to use in the large path length limit. However, numerical
procedure is presented for both forms of the energy and radiafive flux
equations. Once again Eqgs. (6.11) through (6.14) provide the basis for
numerical solutions also in the large path length limit. For this 1limit, the

solution given by Eq. (6.19) is expressed as

(6.23)

where g3(t) is used for the solution of Eq. (6.7a) and gaq(t) for Eq. (6.7b).

A substitution of Eq. (6.23) into Eq. (6.7a) results in

where integral functions 613(5) and 614(5) are defined in Appendix C. The
solution of Eq. (6.24) is found to be

g3(t) = [g(0) = G4(E)/G5(E)] expl- Gy 5(E)t] + G 4(E)/G5(E)  (6.25)
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where g(0) is defined again by Eq. (6.12). Equation (6.23) along with Eq.

(6.25) provides the solution of the energy equation, Eq. (6.7a).

A combination of Eqs. (6.23) and (6.7b) results in
gy (t) + Gi5(E) g,(t) = Gyg(E) (6.26)

The integral functins Gls(i) and Gls(i) appearing in Eq. (6.26) are defined

in Appendix C. These, however, can be evaluated easily with the results

[M,/(-£2)142 + (26-1) 2n[(E-1)/%)) (6.27a)

6,5(2)
616(8) = 2 [M/(2-6%) 141 + & anl(g-1)/€]) (6.27b)

The solution of Eq. (6.26) is found to be
g,(t) = [9(0) - 6;4(8)/6,5(E)T expl- 6,(E)t] + G ((E)/G5(E)  (6.28)

where again g(0) is defined by Eq. (6.12). A combination of Egs. (6.23),
(6.27) and (6.28) provides the solution of the energy equation, Eq. (6.7b).

The only parameter appearing in the solution of Eq. (6.7b) is M;.

The expessions for the nondimensional heat flux in this case is obtained

from a combination of Eqs. (6.8) and (6.23) as
and QE,t) =1 - Gyg(8) g,4(t) = Gyy(E) (6.29)

where G17(£) through Gzo(a) are defined in Appendix C and can be evaluated
in closed forms. The corresponding expressions for the radiative heat flux at

the lower wall are found from Eqs. (6.9) and (6.23) as
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and Q(0,t) =1~ 623 g4(t) - G24 (6.30b)

where again Gp; through Gpq are defined in Appendix C and are not functions of

E.
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7. RADIATIVE INTERACTION IN LAMINAR FLOWS

The physical system considered is the energy transfer in laminar, in-
compressible, constant properties, fully-developed flow of absorbing-emit-
ting gases between parallel plates (Fig. 7.1). The condition of uniform
surface heat flux for each plate is assumed such that the temperature of the
plates varies in the axial direction. Fully developed heat transfer is
considered, and axial conduction and radiation is assumed to be negligible
as compared with the normal components. Consistent with the constant prop-
erties flow, the absorption coefficient is taken to be independent of temp-
erature and radiation can be linearized. Extensive treatment of this prob-
Tem is available in the literature [23, 41]. The primary motivation of
studying the problem here is to investigate the extent of radiative inter-

action for high temperature flow conditions.

7.1 Basic Formulation
For the physical problem considered, the energy equation, Eq. (4.1),

can be expressed as [8]

oC (T + udT 4y 8Ty = 22T 4 pyy 0 4 3% givg,  (7.1)
LY X oy ay? dx oy :

where u and v denote x and y components of velocity, respectively. In de-
riving Eq. (7.1) it has been assumed that the net conduction heat transfer
in the x direction is negligible compared with the net conduction in the y
direction. This represents the physical condition of a large value of the
_Peclet number. By an analogous reasoning, the radiative heat transfer in
the x direction can be neglected in comparison to that transferred in the y

direction. If, in addition, it is assumed that the Eckert number of the
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flow is small, then Eq. (7.1) reduces to [8]

2 aq
£+u£+v£=aaT- 1 & (7.2)
at ax 3y 3y? pCp dy

where a = (k/pCp) represents the thermal diffusivity of the fluid.

For a steady fully-developed flow, v = 0, and u is given by the well-

known parabolic profile as

u=6u (& -E2); e = y/L (7.3)

where Uy represents the mean fluid ve]ocity. Also, for the flow of a per-

fect gas with uniform wall heat flux, 3T/ax is constant and is given by

aT/ax

(20q,)/ (u L/K) (7.4)

Now, by combining Egs. (7.2) - (7.4), the energy equation is expressed in

nondimensional form as

2
B o-1p(-g2) =22 L R (7.5)
3t g2 q  93E

where

v =at/L2 30 = (T - T))/(q,L/k)

The expression for aqR/az in Eq. (7.5) is obtained from either Eq. (3.22) or
Eq. (3.24).

By assuming that the initial temperature distribution in the gas is
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some uniform value Ty = T,;, the initial and boundary conditions for this

problem can be expressed as

6(z, 0) =0 (7.6a)
(0, 1) =0 (1, 7) =0 (7.6b)
eg(z =1/2) = 0 ; eg(g =0) = - eg(g = 1) (7.6¢)

It should be noted that all the boundary conditions given in Egs. (7.6) are
not independent and any two convenient conditions can be used to obtain
solutions. Also, the initial temperature distribution can be any spgcified
or calculated value of 8(¢, 0) = f(g).

For flow problems, the quantity of primary interest is the bulk temper-

ature of the gas, which may be expressed as [41]

0p = (Tp-T)/(a,L/K) = 61, 0(&, ) (& - £2) at (7.7)

The heat transfer dy is given by the expression, q, = hc (Tl-Tb), where hC
is the convective heat transfer coefficient (W/cm2-K). In general, the heat
transfer results are expressed in terms of the Nusselt number NQ = hc Dh/k.
Here, Dh represents the hydraulic diameter, and for the parallel plate geom-
etry it equals twice the plate separation, i.e., Dh = 2L. Upon eliminating
the convective heat transfer coefficient hC from the expressions for qw and
Nu, a relation between the Nusselt number and the bulk temperature is
obtained as

Nu = 2 qu/k(Tl-Tb) = -2/ (7.8)

b
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The heat transfer results, therefore, can be expressed either in terms of Nu

or eb.

7.1.1 Steady Laminar Flow

For steady-state conditions, 38/3t = 0 and Eq. (7.5) becomes
0" - 12 (£-82) = (1/q)) dq./de (7.9)

By integrating Eq. (7.9) once and using the conditions that at £ = 1/2,

qR(g) and (de/dg) are equal to zero, one obtains
' - 2(32 - 23) + 1 = qp(&)/q, (7.10)

The expression for qR(g) in Eq. (7.10) is obtained from either Eq. (3.21) or
Eq. (3.23).

For the present physical problem, e; = e, and Flm- = FZm . Thus, for

i i
the case of linearized radiation, a combination of Egs. (3.21), (5.2a), and
(7.10) results in

8' - 2 (382 - 2e3) + 1

= 2 (L/K) K {15 o) B2 uy, (5-€")] de*
5 jop 10T Vg iy ol
. f; o(¢') A} [% ug; (£'-€)]1 dg'} (7.11a)

A combination of Eqs. (3.23), (5.2a), and (7.10) gives an alternate form of

the energy equation for the steady case as
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' - 2(3g2 - 2£3) + 1

n

CLR y iS5 (do/ae') B, E— ugs (6-€")7 de*
i=

+ f (de/de*) A, [E-u01(£ -z)] de '} (7.11b)

Note that this equation can be obtained directly by integrating the left-
hand side of Eq. (7.1la) by parts. Equations (7.11) provide two forms of

the energy equation for the steady-state conditions.
For the case of negligible radiation, Eqs. (7.11) reduce to
=2 (32 - 283) - 1 (7.12)
The solution of Egs. (7.12) is found to be

0(g) = £ (282-£3-1) ' (7.13)

Thus, a combination of Egs. (7.7) and (7.13) gives the result for the bulk

temperature for the steady case with no radiation as
= 17/70 (7.14)

This result is useful in determining the extent of radiative contributions.

7.1.2 Transient Radiative Interactions

For the transient case, a combination of Egs. (3.22), (5.2a), and (7.5)

gives the energy equation for the linearized radiation as
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- - - -2
Ocr = O 3Ne - 12 (g£-£2)
W Myl 5 eers ©) T (2 ugy(e-e)] de’
1 -—
+ 1 efe', 1) A E%-u01(s‘-z)] dg'} (7.15a)
£
where

n
N = (PL2/k) K, = (PLZ /k) '21 Si(T) (dew_/dT)T1
i= i

Note that this definition of N is slightly different than the definition of
N, in Eq. (5.4c). The dimensionless gas property N characterizes the rela-
tive importance of radiation versus conduction within the gas under opti-

cally thin conditions [23, 41]. Also, by combining Egs. (3.24), (5.2a), and

(7.5) another form of the transient energy equation is obtained as

[«
!

- r2
L 12 (£-£2)

3 (L/k) T Hy.u [fE(s0/0e") At [2u.(e-2")] de
9 i=1 11701 0 i 2 0} i

fl
g

(0/08") By [ gy (e'-2)] de') (7.15b)

Note again that Eq. (7.15b) can be obtained directly by integrating the
left-hand side of Eq. (7.15a) by parts. Quite often, Eq. (7.15b) is the
convenient form to use in radiative transfer analyses.

For the case of negligible radiation, N = 0 and both forms of Eq.

(7.15) reduce to
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- = _z2
966 o, 12 (g-£2) (7.16)

By employing the product solution procedure, the solution of Eq. (7.16) can

be obtained and the result can be expressed in terms of the bulk temperature

through use of Eq. (7.7).
The solution of Eq. (7.16) is assumed to be of the form
8(e,t) = g(g) + hie,) (7.17)
From Eqs. (7.16) and (7.17), there is obtained two separate equations as
g" = 12(g-£2) (7.18)
h,.-h_ =0 (7.19)
The solution of Eq. (7.18) is obtained by direct integration as
g(g) = g(282-£3-1) (7.20)
This is the same result as given by Eq. (7.13) for the steady case if g(g)

is replaced by 6(¢). The solution of Eq. (7.19) is found to be (see Sec.
7.2)

h(g,r) = ;l C, sin (nme) exp[-(nw)21] (7.21a)
n=

where
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1
Ch=-2 [ g(g) sin(nng) dg, n = 1,2,... (7.21b)
0

Thus, the complete solution of Eq. (7.16) is given by

0(g, 1) =& (282-g3 -1)
n

* I C sin (a) exp(-a2t) ; a=nn (7.22)
n=1

The expression for Cn is obtained from Egs. (7.20) and (7.21b) as
C, = (4/a%) [12 - 12a%2 + a*) cos(a) - 24] , n=1,2,.... (7.23)

where a is defined in Eq. (7.22). By combining Eqs. (7.7) and (7.22), the

expression for the bulk temperature is obtained as

o, =-17/70 + 6 = C, [(1/a) + (4/a3)] exp (-a2t) (7.28)
n=1

where C  is given by Eq. (7.23).

7.2 Optically Thin Limit
In the optically thin 1imit, the steady-state energy equations, Egs.
(7.11a) and (7.11b), reduce to

o' - 2(362-263) + 1 -32- NP o(er) det - e(e) de'] (7.25a)

o' - 2 (32-263)+ 1 %N Ui (e-') (de/dg")de"
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+ f1 (g*-g) (de/de*)de" (7.25b)
£

The differentiation of Egqs. (7.25a) and (7.25b) yields the same energy

equation for the optically thin limit as
8" - 3N = 12 (£-£2) (7.26)

The solution of Eq. (7.26) satisfying the boundary conditions 8(0,7) = O and
8(l,t) = 0 is found to be

0(£) = (16/3%) [sinh(- 3N/2)/sinh (Y 3N)] coshly 3N (£-1/2)]
o+ (4/N)(g2E + 2/3N) (7.27a)

Alternately, the solution of Eq. (7.26) is written as

8(g) = C; exp (\I;«s) + Gy exp (-ﬂ £)
+ (1/m2) (24-12 m + 12 me2) ; m= 3N

The constants C; and C, are obtained by using the boundary conditions ©(0) =

0 and 8'(1/2) = 0, and the solution for 6(g) is found to be

o(e) = () [-28/ (1 N™)] (e V" N &+ o\ £y

+24 - 12meg + 12 m &2} (7.27b)

Equations (7.27a) and (7.27b) should produce identical results. The

expression for the bulk temperature, in this case, is obtained by combining
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Egs. (7.7) and (7.27b) as

op = 28 [(1-eN™)/(1ee ™)) - 288, 28 12 (7.282)
m /2 m m2 5m '
or
, -1/2
6, = [1/(3N)3] {576(3N) "~ (NEXP) - 21.6N2 + 72N - 288}  (7.28b)
where

NEXP = [1-exp [-(3N) “T}/{1 + exp[-(30) " 21}

In the optically thin 1imit, the transient energy equations, Egs.

(7.15a) and (7.15b), reduce to

-0 - 3N6 = 12 (g-&2 7.29a
EE 1 (g-€2) ( )

8 -0 =-12(¢ - &2
£ . 2(g - &2)

= E.N [fi (30 /ag')de ' - fl(ae/ag') dg'] (7.29)
g

Note that Eq. (7.29b) is identical to Eq. (7.29a).

The solution of Eq. (7.29) is assumed to be of the form
8(E,7) = g(g) + h (&,7) (7.30)

Thus, Eq. (7.29) can be written as

h.. -h_ - 3Nh =
T

e + 3Ng + 12(¢ - £2) (7.31)

3
Consequently,
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g" - 3Ng = 12(¢ - £2) (7.32)

and

hEE -h -3 =0 (7.33)

~

The conditions for Egqs. (7.32) and (7.33) are obtained from Eq. (7.6) as

6(0,t) = h(0,t) + g(0) = 0; h(0,7) = 0, g(0) =0 (7.34a)
8(l,r) = h(1l,7) + g(1) = 05 h(l,r) =0, g(1) =0 (7.34b)
8(¢,0) = h(g,0) + g(g) = 0; h(g,0) = - g(g) (7.34c¢)

The solution of Eq. (7.32) satisfying the boundary conditions given by
Egs. (7.34a) and (7.34b) is identical to the solution of Eq. (7.26) as given
by Eq. (7.27) if e(¢) is replaced by g(g), i.e.,

a(g) = (16/312) [sinh (- y38/2)/ sinh(y3N)] cosh [Y3N (£-1/2)]
+ (4/N) (g2 - & + 2/3N) (7.35)

The solution of Eq. (7.33) is obtained by using the product solution

procedure and implying the conditions h(0,t) = h(1, t) = 0 and h(g,0) =

-g(¢). For the product solution, it is assumed that
h(g,7) = F(g) G(7) (7.36)

By using Eq. (7.36), Eq. (7.33) is separated into two ordinary differential

equations which are expressed along with appropriate conditions as

F* + 22 F =03 F(0) =0, F(1) =0 (7.37)
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B+ (3N +22) G =03 (8,0 = 6(0) = gle) (7.38)
The solution of Eq. (7.37) is given by
Fn(g) = sin (mg), n = 1,2,...
and the solution of Eq. (7.38) is found to be
G, () = C, exp {- [3N + (nr)2] }

Thus, the complete solution of Eq. (7.33) is

h(g,t) = ;1 C, sin (nmg) exp {-[3N + (nw)2]} (7.39)
n-‘:
where

1
C, = -2 [ g(g) sin (ng) d&, n = 1,2,... (7.40)
0

Now, the solution of Eq. (7.29), as expressed by Eq. (7.30), is written as

8(,7) = (16/3%) [sinh (-y3N/2)/ sinh(y3N)] cosh [N (£-1/2)]
+ (8/N)(£2 - £ + 2/3N)
+ ;1 C, sin (nmg) exp{-[3N + (nm)2]} (7.41)
n=

From Eqs. (7.35) and (7.40), it follows that



47

C =0 , for n even (7.42a)

32[3N+(nw )2 ]/[3N2(nw)3] +2(nw)/{3N2[3N+(n=)2]}, for n odd (7.42b)

By combining Eqs. (7.7) and (7.41), the expression for the bulk

temperature is obtained as

o, = 6 { (16/3%) [sinn(-{ 38/2) /sinh({ 3N) 1L (1/3N) cosh( Y3N/2)
- (4 +Y3N) (30)3/2 sinh(Y3N/2)] + (4/N)[-L/30 + 1/(3)]

+ ;1 C, [1/(nm) + 4/(nw)3] exp[-(3N + n2q2)z]} (7.43)
n'—'

where C, is given by Eq. (7.42).

7.3 Large Path Length Limit
In the large path length Tlimit, the steady-state energy equations, Egs.
(7.11a) and (7.11b), reduce to
' - 2(3¢2 -253)+1=Mf2 (') de*/ (¢ - &) (7.44q)

8' - 2(382 - 283) + 1
n

-— E 1 3 1 ]

= (L/k) iil Hh.{f0 (de/dg') ln[; uy; (€ - £')1de

* f;(de/dg') n [% ugi(g' - €)1 dg! (7.44b)

where

n

M=HL/k= (L/k) .21 AOi(dewi/dT)Tl (7.44c)
i=

Through integration by parts, it can be shown that Eq. (7.44b) reduces to
Eq. (7.44a). The parameter M in Eq. (7.44c) is defined differently than M,
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in Eq. (5.4e). The nondimensional parameter M constitutes the radiation-
conduction interaction parameter for the large path length limit [23, 41].
Equation (7.44a) does not appear to possess a closed form solution; a
numerican solution, however, can be obtained easily.

In the Targe path length 1imit, the transient energy equations, Eqgs.

(7.15a) and (7.15b), reduce to

6, - 9, - 3N - 12 (£ - £2)
= - (HL/k) [f‘ze(s',r) de'/(g - g')2 + j'; o(g'st) dg*/(g' - £)2] (7.45a)

1
0pe -0, - 12 (g - £2) = (HiL/K) fo (36/3€)dE'/(E - &) (7.45b)
Since |(€-£')?|=|(¢'-€)2|, Eq. (7.45a) can be written as

8 -0 - 3N9 - - £2
ce . 3N 12(g - £2)

1
= - (HL/k) f (e, dEr/(E - 87 (7.45¢)
Through integration by parts, Eq. (7.45c) can be expressed as

1
6y - 0. - 3N - 12 (£ - £2) = (HL/K) fo (38/35') dg'/(£ - €')  (7.45d)
Equations (7.45a) - (7.45d) represent different forms of the governing equa-
tions in the large path length limit. With the exception of the term (-3Ne)
on the left-hand side, Eq. (7.45d) is identical to Eq. (7.45b). Since N
represents the radiation-conduction interaction parameter only in the

optically thin 1imit [23], it should not appear in the governing equation
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for the large path length limit. Thus, Eq. (7.45b) is the correct equation
to use for solution in the large path length limit; the solution of this

equation is obtained by numerical techniques.

7.4 Method of Solution
The solution procedures for both steady and unsteady cases are pre-
sented in this section. In principle, the same numerical procedure applies

to both the general and large path length limit cases.

7.4.1 Steady-State Solutions

The general solution of Eq. (7.11la) or Eq. (7.11b) is obtained numer-
ically by employing the method of variation of parameters. For this, a

polynomial form for 8(&) is assumed in powers of & as
n
0(g) = = a & (7.46)

By considering a five term series solution (a quartic solution in g) and
satisfying the boundary conditions o(0)=6'(1/2) = 0 and 0'(0) = -8'(1),

one obtains

ay (g - 263 + g )+ ap(E% - 283 + &Y) (7.47)

[«2]
o~
vy
~

1]

Thus,

a; (1 - 682 + 4g3) + a, (2¢ - 6g2 + 4z3) (7.48)

<D
—
oy
~—
il

A substitution of Eq. (7.48) in Eq. (7.11a) results in

a (1 - 622 + 4g3) + ap (28 - 682 + 483) - 2(38%2 . 28%) + 1
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3 n £ - 3
= E.(L/k) iil Hh.um.{fo 8(g') A%EE uy; (€ - €')1de

-f;e('s')m-' 2 ugy (e - £)] ') (7.49)

where expressions for 8(¢') are obtained from Eq. (7.47).

The two unknown constants a; and a, in Eq. (7.49) are evaluated by
satisfying the integral equation at two convenient locations (£=0 and & =
1/4 in the present case). The entire procedure for obtaining éland a, is

described in Appendix E from which it follows that

ay = (lla, - 16 o) /DEN (7.50a)

3 = (16 a3 - 1llg,)/DEN (7.50b)
where

DEN = 16 (0y0y - apaz) (7.50c)

and coefficients q; through a, are defined in Appendix E.
Now, with known values of a, and a,, Eq. (7.47) provides the general
solution for 6(2). The expression for the bulk temperature is obtained by

combining Eqs. (7.7) and (7.47) as

o = (1/70) (172 + 3a,) (7.51)

Note that for the case of no radiative interaction as, a3, and ay are equal
to zero anday; = 1. Thus, a, =0 and a = -1, and Eq. (7.51) gives the
result of Eq. (7.14).

The governing equation for the large path length limit is Eq. (7.44a).
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For this equation also the solution is given by Eq. (7.47) but the va1ue§ of
a's are completely different in this case. There are two approaches to
obtain solutions in the large path length limit. One approach is to make
use of Eq. (7.44a) and go through the entire numerical procedure described
in Appendix E for the general solution. Another approach is to work with
the general solution but evaluate all Ri and Si integrals of Appendix E in
the large path 1imit. In the large path length 1imit, the integrals can be
evaluated in closed forms. Both procedures are described briefly in Appen-
dix E. In order to distinguish the large path length limit solution from
the general solution, constants a; and a, are replaced by b, and b,, and

coefficients a; through o, are replaced by g, through g,. The solution for

the large path length limit, therefore, is given by

o(g) = by(g-283+g4) + by (E2-2634&") (7.52a)
where
b, = (11g, - 16g,)/BOTTOM (7.52b)
b, = (1683 - 118;)/BOTTOM (7.52¢c)
BOTTOM = 16(B;8, ~ B,B83) (7.52d)

and coefficients g, through 8, are defined in Appendix E. For this case,

the bulk temperature is given by

6, = (1/70) (17b; + 3b,) (7.53)

Note that in this case the value of coeffients g, through g, are obtained in

~closed form.
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7.4.2 Transient Solutions

The governing energy equations for the transient case are Eqs. (7.15a)
and (7.15b). As in Sec. 6.3, general solutions of these equations are
obtained numerically by employing the method of variation of parameters.

For the present problem, a polynomial form for 8(g,t) is assumed as

o(e) =T ay(r) " (7.54)
m=0 '

For a quadratic temperature distribution in & (with time dependent coeffi-

cients), Eq. (7.54) is written as

8(Est) = a(t) + ay(r) £ + ap(r) &2 (7.554a)

By using the boundary conditions 8(0,t) = 0 and eg(g=1/2) = 0, this reduces
to

o(g,1) = g(r) (£-£2) (7.55b)
where g(t) represents the time dependent coefficient. Consequeqt]y,
6,(6,7) = g(r) (1-2); 6, (5,7) = -29(); 0 (£,7) = (£-€2)g'(r) (7.56)
Also, a combination of Eq. (7.6a) and (7.55b) yields the initial condition

e(g,0) = g(0) =0 (7.57)

Note that essential boundary conditions are used already in obtaining the
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solution represented by Eq. (7.55b).
By employing Eqs. (7.55b) and (7.56), Egs. (7.15a) and (7.15b) are

transformed in alternate forms which are expressed in a compact form as

(1) + [Jl(g)’} (r) +12=0 (7.58)
g'(r ‘Jz(g) glr .
where Jy(g) and Jy(¢) are defined in Appendix F. The function J;(£) is used
for solution of Eq. (7.15a) and J,(g) is used for solution of Eq. (7.15b).
The solution of Eq. (7.58) satisfying the initial conditions of Eq. (7.57)

is given by

12

fexp [-d(¢)x1-1} (7.59)
J(E)

g(r) =

The temperature distribution given by Eq. (7.56b) can be expressed now as

12) fexp [-3(g)r1-1} (5 -£2) (7.60)

0(g,7) =
J

The expression for the bulk temperature is obtained through use of Eq. (7.7)

as
! .
0, = 72 [ [(5-62)" /(6) Yexpl-0(e )e1-1} (7.61)
Note that in Egs. (7.59)-(7.61), J(&) becomes J;(E) for solution of Eq.

(15a) and J,(g) for solution of Eq. (15b).

For a quartic solution in &, Eq. (7.54) gives the result identical to
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Eq. (7.47) which for the transient case is expressed as

8(g,t) = g(t)(g - 283 + &*) + n(r)(g2 - 2&3 + ") (7.62)
Thus,

0 (£,t) = (1 - 682 + 4g3)g(v) + 2(g - 382 + 2£3)h(x) (7.63a)
egg(z,r) =12( - £ + z?) g{tr) + 2(1 - 68 + 6£2) h(r) (7.63b)
0 (£,7) = (£ - 263 + &%) g'(r) + (g2 - 2% + &g*)h' (1)  (7.63c)

By substituting Eqs. (7.62) and (7.63) into Eq. (7.15a), one obtains

x g'(r) + J3(g) g(r) + yh' + &(E) h(r) = -z (7.64)
where

x=(g - 23 +g4%); y= (g2 - 283 +%); z = 12(g - £2)

and functions J3(g£) and J,(§) are defined in Appendix F. Equation (7.64)
constitutes one equation in two unknowns, namely g(t) and h(t). However,
since the equation is linear in t, the principle of superposition can be

used to split the solution into two solutions as

i

x g'(z) + J3(E) g(r)
yh'(t) + J,(g) h(q)

-2/2 (7.65)

-z/2 (7.66)

The initial condition for this case can be written as

0(£,0) = g(0) (¢ - 26 + E3) + h(0)(&2 - 283 + &%) = 0 (7.67a)

Consequently,

9(0) =0; h(0) =0 (7.67b)
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The solution of Egqs. (7.65) and (7.66) satisfying the appropriate

initial condition of Eq. (7.67b) is given respectively as

9(r) = [2(g)/235(£)] {expl-d5 (8 )r/x(g)I-1} (7.68)
h(t) = [z(€)/23,(g) ] {exp[-dy(g)x/¥(£)]-1} (7.69)

By substituting Egs. (7.68) and (7.69) into Eq. (7.62), the expression for

the temperature distribution is obtained as

o(g,t) = [6(£-82)(g-283+€4)/33(g) expl-J5 (€)T/x(8)1-1}
+ [6(g-£2)(g2-2634") /9, () l{exp[ -3, (g)x/y(g)1-1}  (7.70)

The bulk temperaturé in this case is given by
0 = 36 [ [(5 - 82)(s - 26 + £4)/35 (&) Wexpl-3s () /x(6)] -1} o
+ 36 IZ[(E - £2)(g2 - 23 + %)/ (g) Hexp[-d (E)T/y(€)]-1} & (7.71)

where x and y are defined in Eq. (7.64).

By substituting Eqs. (7.62) and (7.63) into Eq. (7.15b), there is

obtained

xg' + J5(g) g(r) + yh' + Jg(8) h(T) = -z (7.72)

where again x,y,z are defined in Eq. (7.64) and functions Js(£) and Jg(%)

are defined in Appendix F. The solution procedure for this equation is
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identical to that for Eg. (7.64) and the results for temperature distri;
bution and bulk temperature are given respectively by Eqs. (7.70) and (7.71)
with J, replaced by J; and J, by Jg.

In the large path length limit, the two applicable governing equations
are Eqs. (7.45b) and (7.45d). The solutions of these equations can be
obtained from the general solutions by evaluating the integrals in J
function in the large path length limit.

Alternately, for a quadratic temperature distribution, Eqs. (7.45d) and

(7.45b) are transformed respectively to

1}
o

1 € :
') + (7)) o) + 12 (7.73)

where J7(2) and Jg (&) aré defined in Appendix F. The solution of Eq.
(7.73) is given by Eq. (7.59) and expressions for 8(g,t) and 8, can be
obtained from Eds. (7.60) and (7.61) respectiveiy. Of course, proper care
should be taken to use the correct relation for J functions for different
equations. The large path length 1imit solutions for a quartic temperature

distribution can be obtained in a similar manner.
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8. PLANS FOR SPECIFIC RESULTS

Some specific results have been obtained and these are being analyzed.

The present plans are to obtain extensive results for the following cases with

varying physical and flow conditions:

A.

Physical Geometries

DLW N =
.

Parallel Plates: One-Dimensional Radiation

Parallel Plates: Two-Dimensonnal Radiation

Diffusing Channel Flow: One- and Two-Dimensional Radiation
Channel Flow: Top Plate Flat, Bottom Plate with a 5-15° ramp
Scramjet Inlet Configurations

Radiative Interaction Cases

1.
2.

3'

o pH
.

Transient Radiative Transfer in Homogeneous Gases

Transient Energy Transfer By Radiation and Conduction in Homogeneous
Gaseous Systems

Transient Energy Transfer By Radiation, Conduction, and Convect1on in
Homogeneous Gaseous Systems

Applications to Flow of Homogeneous Gaseous Mixture

Applications to Flow of Chemically Reacting Gaseous Mixtures
Applications to the Scramjet Inlet Configurations.

Boundary Conditions

O 5 W N =
- L)

Isothermal Black Boundaries
Isothermal Gray Boundaries
Nonisothermal Boundaries

Boundaries with Uniform Heat Flux
Actual Scramjet Inlet Configurations

Flow Conditions

OV WM

Incompressible - Various Cases

Compressible - M_= 0,5, 1, 2, 3, 4, and 5

Tempera ture Range - 300, 500 1000 2000 and 5000 K
Pressure Range - 0.1, 1, 2, 5, and 10 atm.

Realistic Conditions for Scramjet Inlet Flows

Participating Medium

QNG WM
.

CO0 - One Fundamental Band
€0, - Three Important Bands
8 - Five Important Bands

Oﬁ - One Fundamental Band

COZ + H,0 (Different Concentrations)

OH + H, 8 (Different Concentrations)

OH + H + 0p + Hy0 (Different Concentrations)
A Realistic Combustion Model for the Hydrogen Air System
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Specific Results

-

U1 £ W N
L]

Nongray Solutions Based on Band-Model Correlations
Optically Thin Solutions

Large Path Length Limit Solutions

Gray Solutions

Nongray Solutions for Scramjet Inlet Flows

58
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9. CONCLUDING REMARKS

A brief review is presented on various band models and band model
correlations that are wuseful 1in nongray radiative transfer analyses.
Different formulations for one-dimensional radiative flux are provided. These‘
are used to develop the basic governing equations for transient energy
transfer in gaseous systems. Limiting forms of these equations are obtained
in the optically thin and large path length limits. Numerical procedures are
described to solve the governing equations for different physical and flow
conditions. The plans for obtaining extensive results for different cases are
provided. The formulation and numerical procedure presented in this study’can
be éxtended easily to multi-dimensional analyses. In the near future, the
influence of radiative interactions will be investigated for the'rea1istic

flow of hydrogen-air mixture in the scramjet inlet configuration.
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APPENDIX A

EXPONENTIAL INTEGRALS AND EXPRESSIONS FOR RADIATIVE FLUX
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Some important relations for the exponential integrals are given in

Appendix B of Ref. 8; and it is noted that
) En(t) dt = - En +1 (t)s En(O) = 1/(n-1)
Now, consider the first integral in Eq. (3.1) as

T
(1) = [0 € (r-9)%F

By defining x = T, - t, dt = - dx, and Eq. (A.2) becomes

T
7 Eala(-an) = [ )

I(1)

T

- [E()],

#
(]

E3(0) - E5 (7y)

Thus,

fa(ry) = E5(0) - 1(1) = Lo p By, -that

The second integral in Eq. (3.2) is written as

T

1(2) = fT;” Ey(t-tp)dt

(A.1)

(A.3)

(A.4)
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By defining x = t - ,» Eq. (A.4) is expressed as

(2) = 127 P Bpleex = [E (], >
= - [Es(rgy-t;) - E3(0)]
or
By ey, mt,) = E5(0) - 1(2) =.% - f:i‘ Ep(t-r,)dt . (A.5)

A substitution of Eqs. (A.3) and (A.5) into Eq. (3.1) results in (for

the case B;x = e;n and B,y = en)

Ry = €1y - €25

T

2 {f,} [ep, (t) - er] Ep(r,-t) dt}

3

T

oA
2 {fTA [ep, (t) - en]Ey(t-r,)dt} (A.6)
This equation when expressed in terms of the wave number « is exactly the

same as Eq. (3.4). Following a similar procedure, Eq. (3.5) is obtained

from Eq. (3.2).
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APPENDIX B

ALTERNATE FORMS OF RADIATIVE FLUX EQUATiONS
In radiative formulations, it is desirable to express the relations for

— —1 -
q. and div q, in terms of A and A , and avoid the use of A . This

r
! "
is accomplished by expressing the integrals containing A and & in

alternate forms through the procedure of integration by parts. This is

performed by using the relation
b ~ b b
fa mdn = (mn)a - fa n dm (8.1)

Consider now the first integral in Eq. (3.21) and express as

B1(1) = [ Fy, (8) K[> ugy (e8] ce! (8.2)

For integration by parts, let

m=Fjw; dn = A L% Uy (g-g')] dg' .
Then,

dm = (dF,w/dg') dg' = (de/dg') dg' .

In order to get n, let
u=3u (s-g), durdgt = - 3 u/2
5 )
and

dn = [dA(u)/du] dg* = [dA(u)/de' x dg'/du] de*

i

- (2/3u,) [d A(u)/dg'] dg' = (- 2/3u;)dA(u)
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Thus,

n = -(2/3uy) A(u) = -(2/3u )R [% ug(£-£")]

Consequently Eq. (B.2) can be written as

2 = 2 + .3
BI(1) = Fyu(g)[~ <<~ A(0)] - Fyu R
(1) = Fra(e)[ B (0)] - Fiu(0) [ u, A (2 u, £)]
2 £ - 3
+-3-—f0 [de (g')/dg*] Al = u, (g-£')]de" (8.3)
U
0

Note that by the definitions given in Eqs. (2.2) and (2.8), A(0) = 0. In

the present case, only the definition given in Eq. (2.8) is acceptable for

A(0) = 0. Also by definition, F,w(0) = 0. Thus, Eq. (B.3) reduces to
— £ ' -3 1
BI(1) = (2/3uy) [ [de (e')/dg'] A [E uy(E-€')]de (8.4)
The second integral in Eq. (3.21) is written as

BI(2)

(2/3u) 5 Tde, (") T [ u, (e'-6)]ds" (8.5)

Let,

m=Fy; dn= 7\"[2 u,(g'-g)]de*
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Then,

dm = (szm/dE')dE' = (dew/dg')da‘

Now, to get n, let
u =3y ('), du/de’ = 3u_/2
2 0 ’ 0

and

dn = [dA(u)/du]de* = [dA(u)/de* x d&'/du]de"
= (2/3u,)[dA(u)/dg*] dg' = (2/3u;) dA(u)

Thus,

n = (2/3u0)K(u) =(2/3uo)313-u0(5'-g)]
2
Consequently, Eq. (B.5) is expressed as

BI(2) = Fpu(1) {(2/3u)) A [.‘;i uy(1-£)]}-{Fpu(g) [(2/3u,) A(0)]}

- (2/3u0) f; [dew(s')/ds'] K'Lg uo(E'—E)] dg' (B.6)
2

Since, by definition, sz(l) =0 and A(0) = 0, Eq. (B.6) reduces to
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BI(2) = - (2/3u,) /! [de (£')/de'] A [23 u, (g'-g)] de' (8.7)
£

By use of Egs. (B.4) and (B.7), the integrals in Eq. (3.21) can be

expressed in alternate forms and this results in Eq. (3.23).
Consider now the integrals in Eq. (3.22); the first integral is written

as

BI(3) = J5 Fy (&") A [g ug (e-€)] d* . (B.8)

For integration by parts, let

=3
[

M3
= Fw (£'); dn = A [5 u, (g-g')] de'
Then

dm

(dFlm/dg') dg' = (dew/dg') dg'
As before, to obtain n, let

23 ' -
u = E.uo(g-g ), du/dg’ = - 3u0/2

and, therefore,
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dn = 9_.[dK(u)/du] dg!
du

-4 &

[dA(u)/du] de'
dz' du

df (-2/3 uo)[d‘A'(u)/du]}

Thus,
n = (-2/3u)) A (u) = (-2/3 u) & [% o, (£€")
and Eg. (B.8) can be written as
BI(3) = {Fyw (-2/3 u)) K [% uy (-€9115
- f5 {(-2r3 uo>'K'L§ ug(g-£")] JdFyw(e')/de"] de* (8.9)

Since Fyu(0) = 0 and A (0) = 1, Eq.(B.9) reduces to
[l 1 5113 1 1
B1(3) = (2/3u,) {-Frale) + g [de,(e)/de"] 'L v, (e-6"))de'} (8:10)
Similarly, for the second integral in Eq. (3.22), one can find
1 1 '3 1 1
BI(4) = [, Fou (£') A {-2- u, (£'-£)] de

= (23 Fyle) + S [de, (s1)/de'] B2 u (s'-6)]de'}  (8.11)
2
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A substitution of Eqs. (B.10) and (B.11l) in Eq. (3.22) results in Eq.

(3.24). Also, a differentiation of Eq. (3.23) with respect to £, by using

the Leibnitz formula, gives

dg () n de
T=3 Ay (2 R’(0) - 0
Cdg i=1 dz
3u g de .(g') ,
* [ {——F E u; (€-€')] de!
2 0 dg
de .
+ 0 _______m1(€) K‘I(O)
de
3u_. 4 de .(¢')
oi wi 3
- f K[=u .(g']de'}
2 £ de! i, ol

Since A(0) = 0, Eq. (B.12) reduces to Eq. (3.24).

(B.12)
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APPENDIX C

DEFINITION AND EVALUATION OF INTEGRAL FUNCTIONS
For the convenience and use in the computational procedure, the follow-

ing definitions are employed in expressing the relations for the integral

functions:
bi = 3u01/2
c; = 1/b1 = 2/3uoi
C(g) = 1/(-€2)
r o= 1/(eTy)

Various integrals are defined and simplified as follows:

Gy (g) = C(g) (3N (E-£2) +
g N
+2

Mg 15 (st ) B by (5] de

i=1 1li“oi i
+f:. (€'£'2) A" [bs(e'-€)] de'}) (C.la)

= C(g) (3N (5-82) +

n b;& n
* -g- iz=1 Ml'i uo’i {fo1 [E-Ciu"gz"'zEciu"(Ci u)Z] K (U)du
+/ [£+c;u-E2 -2 c;u=(c;u) TR"(u)du}) (C.1b)
0



6,(z) = C() '(3~1<§ - £2)

-

= Cle) (3N (% s

3 n b.|5 n

S M Uf fe2e cu e ()] Ry (u)do
b.i(]-"g) U]

* 1, [£2 + 26 c; u + (c;u)2 -1] A; (u) du})

n 1
ae) = o) G 1wy U5 (- Ry Dog(een)lee:

1 [}

[¢ (1-2') & [b; (g'-£)]de'})

n b.&
c(z) (17= . My; 1S, [1-2 + 2 cqu] T (u)du

b (1-£) .
-fo 12 - cqu] By(u)du})

n ' )
6 (8) = C(E) ('3°21 Ny 5 {fi £' A; [by(E-£')]de
'l:

- [p &' R by (er-e))de'))
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(C.2a)

C.2b)

(C.3a)

(C.3b)

(C.4a)



= C(g) (-

bi(l-E)

+ fg

Gs(£) = (3r/8)

n be 1
zileli {IO [E‘Ciu] ﬂ% (u) du
[e + c;u] A (u)du})

n £ 2
1Z1 ugi Hyy {15 (8'-") Ay b, (6-51)]de

- I; (6" ﬁﬁ [b;(g-¢*)]de"}

b1.£

n 2. _
- /e 121 Hys 1o [8-cju -£2 + 26c,u-(cju) ] Aj(u) du

bi (1-¢)

0

Gs(£) = (31/8)

[g+ciu-52 - chiu -(ciu)z] 7ﬁ(u) du}

n
E I2 —-I ! 1
121 ug; Hyy 1/ &' Al [by(g-E")]dE

+ f; (1) Ay [by(z'-g)] de'}

n b.t ot
= (r/4) izl Hli{fo] [g2-2¢ cyu +(csu)?] A; (u) du

+ fo

[1-82-2¢ c;u - ciu)z] ﬁ;(u) du}
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(C4.b)

(C.5a)

(C.5b)

(C.6a)

(C.6b)



n
G (e) = () T My, {15 (1-2+) & Tby(e£1)] ae

.42(1-g') B [by(g'-€)] de')

n b.&
= (r/6) iil (Hli/uoi) {fo1 (1-2¢ + 2c1.u) Ki(u) du

- fo (1-25—2ciu) A].(u) du}

n
G(e) = (1/4) T oy {fG (20 R [bj(e50) e

-1 @) R [by(s0e)] )
3

n b.g
= (r/6) 1(H11/uoi){fo1 (2¢ - 2c5u) A; (u) du
i=
b.(1-£)
- fo ! (28 + 2c1.u) Fi(u) du}

n
= (/D) T ugy gy Uy (8D Ry () 06')

n b, .
S /) Ty {1, [equ = (c;u)?] & (u) du}
i= '
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(C.7a)

(C.7b)

(C.8a)

(C.8b)

(C.9a)

(C.9b)



Gro

G11

G2

Gy3

n
= (3r/8) 1_Z=1 ugi Hyj {f; (1£') A} (bE') d&'}

n b. ]
(r/a) 121 Hyg {fy (L=cyu) Ay (u) du}

Hy 5 {f:) (1-26*) A; (bsE') &'}

"~

i

(r/a) i=1

b.
= (r/6) (Hy; {f01 (1-2 c;u) & (u) du}

—do
#H~1=
(31

n

1 _
(r/a) 7 (Hpqugs) (o (280) Ay (by &) 62}

n
b,
(x/6) T (H4/uqq) {f," (2 c; u) A (u) du]
1=

_ E [} 12 dg‘
{g) = Cle) {3% (-g2) - M {IO (€ -¢ ) -(—E-:;’_-r—)-z

+IIE'-F2) de’ 1} (improper)
£ (g'-£)?

(g) = Clg) {3N (i- £2) + M [fg g2 9¢'
T P (g

1

+ fg (g2 - 1) (g?€: E)l} (improper)
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(c.10a)

(C.10b)

(C.11a)

(C.11b)

(C.12a)

(C.12b)

(C.13)

(C.14)



dg'

1
G =M CE)[. (1-&°
15 (8) =M CE) [, ( ) =D

=M C(E) {2 + (&-1) £n [(¢-1)/E]}

- 1 deg'
G (£) = -2M C(g) '
16 ‘& 1 Ule) [y¢ Gt
=2 M CE){1+¢&2n [(E-1)/E]}
1 de!
G,, (g) = (rH,/4) (g'-g'2)
el TR o e e
= (TH,/8) {-%+ g - (e - €2) an [(e-1)/e]}
Gyg (g) = (rH,/4) [f: £'2 ' 1 de ] (improper)
(e-¢') & (&-¢')
n
Gio (E) = (T/8) I Hy; {15 (1-2") 2n [by(E£)]dE"
: . i=1 0

* f; (1-25') 2n [b; (£'-£)] dg'}

= (rH,/4) {-§+g + (g2-¢) an [(L-g)/e])

n
oo () = (T/4) Ty {fg 280 tn [by(e£1)] a6
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(C.15a)

(C.15b)

(C.16a)

(C.16b)

(C.17a)

(C.17b)

(C.18)

(C.19a)

(C.19b)



+ f; 26' en [by (£'-)] de'}

n

(0/8) (g2 on [e/ )] - ¢ -

n

+ izl Hl'i n [bi(lw‘;)])
1
Go1 = (rHy/4) [ (8'-€'2) dg'/E' = (TH,/8)
Goz = (THy/4) I: (1-£+2) g6 1/8
= - (rH,/4) [%.+ en (0)] (improper)
n
1
G2z = (T/4) ';1 Hyg Jo (1-28') 2n (b £') dE!
":

- (r H/8) = - H/(8T?)
n 1
Gu = (F/8) 1 Hy5 [o 280 20 (bg £7) de

n
= (r/4) [- (W /2) +1_z=1 Hy; 20 (b;)]
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(C.20a)

(C.20b)

(C.21)

(C.22a)

(C.22b)

(C.23a)

(C.23b)

(C.24a)

(C.24b)



1.

2.

3.

APPENDIX D

INFORMATION FOR NUMERICAL PROCEDURE
Data:

T = 300, 500, 1000, 2000, 5000, etc. ~ K

P=20.1, 1, 2, 5, 10, etc.
L=1, 2, 5, 10, 20, etc.
g+ x =0.0+ 1.0; x = UY(I)

Thermal conductivity of the gas:

Ke = Ke (T, P)

f

The Planck function and its derivative:

C1
exp (Cz/T) -1

U]

PF

ebw(T)

de C1 C2 exp (Ca/T
bw _ C1 C2 exp (C2/T) = PO
dT T2 [exp (C2/T)-1]

where
C, = (2mhc2)w?
Co = (hc/k) @
C; C = (27 h2 c3/k)w"* .

~ atm

~

and w = w_ = w_ = wave number center of the ith band.

cm

79

(0.1)

(D.2)

(D.3)
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By defining

TEXP = exp(C,/T)
Eq. (D.3) is expressed as
PFD = (CyCo)(TEXP)/[(T2)(TEXP ~ 1)2] (D.4)

A1l values in Egs. (D.2) - (D.4) should be evaluated for each band.

4. Information or relation for Ao for each band, AO = f(T).

5. Information on C02 for each band, C02 = f(T).

6. Information on ug for each band, u, = Co2 PL (nondimensional).
7. Information on B2(T) for each band (nondimensional).

8. Equivalent or effective pressure relation for each band.

Pai = [(P/Po) + (Pi/Po) (bi - l)]n (nondimensional) . (D.5)

In Eq. (D.5), P0 = 1 atm and, therefore, Pi and P must be in the units
of atm. Note that Pi is the partial pressure of the ith species in a
gases mixture and P 1is the total pressure; b, (the self broadening
coefficent) and n are different for different bands. For a single

component system, Eq. (D.5) is usually expressed as
Po = (b P/Po)n (nondimensional) (D.6)

9. Line structure parameter for each band:
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8 = B2 P = BETA (D.7)

10. Correlation for each band (for Tien and Lowder's correlation):

f(B) = 2.94 [1 - exp(-2.608)] = F (D.8)

11. Band absorptance correlation for each band (Tien and Lowder's

correlation):

u+ 2
u+ 2F

K (u,8) = 2n [uF (= ) +1] = AU (D.9)

12. The derivative bf the band absorptance correlation for each band (Tien

and Lowder's correlation)

A (u,8) =[F (u2 +4 uF + 4F)]/DEN = AUD (D.10)

where

DEN = [F (u2 + 2u + 2) + u](u + 2F)

These basic relations are used in the governing equations of Section 6
to obtain numerical solutions for specific gaseous systems. The spectro-
scopic and correlation quantities needed for these calculations are available

in [22,24].
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APPENDIX E
EVALUATION OF CONSTANTS FOR STEADY LAMINAR FLOWS

To determine the constants in Eq. (7.47), Eq. (7.49) is evaluated at

g =0andg = 1/4. To avoid excessive writing, the following notations are

used (some of which are also used in Appendix C)

g' =n, d&' =dn

bi 3u01/2; c; = 1/bi = 2/3uOi

For £ = 0, Eq. (7.49) reduces to

a, +1+3 (L/K) 2 Hy s Uns {jlfal(n-2n3+n"')
9 jap 11701 Uy
+ 3 (n2-2n3#*)] Al(b;n)dn} = 0 (E.1)

By defining u = bin, Eg. (E.1) is expressed in an alternate form as
1+(L/k : bi 3 A
+ - 47 R’

a;{1+(L/k) iilHli fo [ciu 2(ciu) +(ciu) ] i(u)du}

b.
U0 5y T we-2le )3 e, ] B () dujet (€.2)

Now, by defining the following integral functions,



Ryg = 17wy R (wg) dyg
by
RZi = fo u% 1q (u,) dui
R.. = fbi ud &' (u,) du
3i o 1 1 i i
R= [T () du
4i o 1 1 1 i
Eq. (E.2) is expressed as
a; a; + ap az = -1
where
n
ap = 1+ (L/K) ALY (CiRyi - 2 cd Rgy *+ cd Ryy)
n
az = (L/k) I Hyy (c?iR21 -2 c? Rys + c? Rpi)

i=1

For £ = 1/4, Eq. (7.49) reduces to

i q, * _3. a, +.l£

16 16 16

n 1/4
=%(L/k) LA (" o) B Do, (i- n)] dn

- Jin o) Doyt = 1y )
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(E.3a)

(E.3b)

(E.3c)

(E.3d)

(E.4a)

(E.4b)

{E.4c)

(E.5)



By defining u

second integral, Eq. (E.5) is written as

bs /4
11 11 3
=+ 2" a +_-- (L/k) X H e(_.- c.u) Al(u) du
16 16 ' 16 27 i=1 1]{ IO ! !

Bbi/4 1
-f o(=+ c,u) A'(u) du
0 4 1 1

By denoting d = C;Us the following relations are obtained from Eq.

e(l-- d) = al(ﬁZ_.- ll.d - _2.d2 +d3 + dv)

4 256 16 8
+52(-—q-—-£d-—}-d2-d3+du)

256 16 8

and

e(l-+ d) = I(EZ_.+.1£ d-_2d2 - 43 + dt)

4 256 16 8

3 1
‘ap (-t Sd-_2dz-ds+ dv)

% 256 16 8

A combination of Eds. (E.6) and (E.7) results in

(L ; [ '/W (u) du - /4 A (u) du]
1 11 {—‘ f i '(0 i

1 bi/4 3b,/4 _
__c. [f uA (u) du +'f0 uA%(u) du]

84

by C£ - n) for the first integral and u = by (n - l) for the
4 4

(E.6)

(7.47):

(E.7a)

(E.7b)



b, /4 3b,/4
- _8_c2 [j' uzﬁ (u) du - fo u?A; (u) du]

bi/4 3bi/4
+ cg L[ u3'K11(u) du + f u37{i’(u) du]
0 0

b,/4 3b. /4

+ C‘;[ / ! u‘*ﬁ'}!(u) du - | ! u‘*’A}f(u) dul}- E)
0 0 16
n bi/4 3b1/4
t g ("‘ & 11{55—6- fﬂ 7‘]5(“) du - fo A (u) du]
b;/4 3b./4

-_—c[] u A'(u) du + [ VO u R (u) du]
16 1 0 1

1 b1/4 3b1/4
- c2[f u2R! (u) du - f u2R! (u) du]
8 1 0 1 0 1

bi/4 3b1/4
+c3[f udA! (u) du + udh! (u) du]
i 0 j 0 i

b /4 3b1/4 3
+ c“ [f u“7¥' (u) du - f u‘*Ki'(u) dul]}- =)
0 16

= 11/16
By noting that for any continuous function F(x)

3/4 1/4 3/4
[ F(x) dx = [ F(x) dx + [ F(x) dx
0 0 1/4

and defining

85

(E.8)
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3b/4 _
S5 = [ Al(u;) du, (E.9a)
1i iy i
b;/4
bi/4
= '
SZi fo u, ﬁ}(ui) dui (E.9b)
3b./4
SSi = Io u, Ai(ui) dui (E.9c)
3bi/4
Sp. = u? & (u,) du, (E.9d)
4 i YT i
bi/4
bi/4 3 :
Sgi = fO' u; ﬁQ(ui) du, (E.9e)
3b./4 4 _
Sgi = fo ug Af(uy) du, (E.9f)
3b./4
Sq5 = f uj 7ﬁ(ui) du, (E.99)
bi/4
Eq. (E.8) can be written as
) az * A ay = - 11/16 (E.lOa)

where
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o3

n
(LK) 2 Hy [(57/256) S5 + (11/16) c; (Syi+53)

(9/8) c% Sai - c% (551+S6i) + cg 571] + 11/16 (E.10b)

Hn

Oy

n
(L/k) T Hy50(9/256) Sq; + (3/16) cj (Sp;+S35)
1

- (1/8) c% Sai - c% (551+S6i) + C%S71] + 3/16 (E.10c)

By solving Eqs. (E.4a) and (E.10a) simultaneously, there is obtained

the results for constants a; and a, as

a = (11 ap - 16 ay )/DEN (E.11a)

a = (16 a3 - 11 ay)/DEN (E.11b)
where

DEN =16 (Qlau - (12(13) (E.llC)

The governing equation for the large path length Timit is Eq. (7.44a)
for which the solution is also given by Eq. (7.47). For the large path
Tength limit, Eq. (7.47) is expressed in the form of Eq. (7.52) which is

represented here as

0(g) = by (£ - 263 + %) + by (B2 - 28° + &%) (E.12)

Thus,

6'(¢) = b, (1 ~ 652 + 8g3) + b, (2 - 652 + 4g3) (E.13)

C o
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A substitution of Eqs. (E.12) and (E.13) in Eq. (7.44a) gives

b, (1 - 6£2 + 4g3) + b, (22 - 6£2 + 4g3) - 2 (3e% - 2g3) + 1

1

= M fle(s') de'/(g-¢") (E.14)

For £ = 0, Eq. (E.14) reduces to

by + 1= =M [ [o(e)/e'] de (E.15)

Upon substituting for e(g') from Eq. (E.12) into Eq. (E.15), the integrals

can be evaluated in closed form and there is obtained

b, By +b, 8, = - 1 (E.16a)
where
B, =1+ (7/12) M; 8, = (1/12) M (E.16b)
For ¢ = 1/4, Eq. (E.14) reduces to
1
Lo v 3p, + 8oy 1 e(er) de/(-e0) (E.17)
16 16 16 0 4

By substituting for e(z') in this equation, another relation between b, and

b, can be obtained in terms of g, and g, . But, this appears to involve the

evaluation of a few improper integrals. Thus, this approach is abandoned in
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favor of an alternate procedure discussed below.

The solution in the large path length 1limit can be obtained from the
general solution by evaluating the integrals R1 and S, in the limit of large
path length. Since in this 1imit A'(u) = 1/u, the integrals in Egs. (E.3)

and (E.9) are evaluated to obtain

= . - 2 . - 3 d = l'"
= . = . = . = 2 °
Sli en (3); 52_i b1/4, S3i 3bi/4’ S4i bi/4 H
= b3 . = 3 . = b4 )
551 bi/192, S6i 9bi/64’ 571 5b1/64 (E.18b)

From Eqs. (E.4) and (E.18a), there is obtained for the large path length

limit

b1 By + bz By = - 1 (E.l9a)

gy =1+ (7/12) M; 82 = (1/12) M (E.19b)

which is the same result as given by Eq. (E.16). From Eqs. (E.10) and
(E.18b), one obtains in the large path length limit

by B3 + by By = -~ 11/16 (E.20a)
where
By = 11/16 + M [(57/256) ¢n(3) + 65/192]
= 11/16 + 0.583 154 559 M (E.20b)
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»
&
]

3/16 + M [(9/256) ¢n(3) + 17/192)]
3/16 + 0.127 164 755 M (E.20c) -

The solution of Eqs. (E.19a) and (E.20a) yields

by = (1182 - 16 By )/BOTTOM (E.21a)
b, = (1683 - 11 B81)/BOTTOM (E.21b)

where
BOTTOM = 16 (3154- 3233) (E.Zlc)

With by and b, known, the solution for the temperature distribution is

obtained from Eq. (E.12).
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APPENDIX F
INTEGRAL FUNCTIONS FOR TRANSIENT LAMINAR FLOWS

For convenience and use in the computational procedure, the following

definitions are employed in expressing the relations for the integral

functions:
= . = . = r2
by = 3uy;/2;5 ¢4 = 1/by; C(g) = 1/(g-£2)
X =E - 263 +g%; y=1£2 283 +g%; z = 12 (£-£2)
a(g) =1 - 682 + 4£3; b(g) = 28 - 682 + 4§3

Various integrals are defined as follows:

n £
q(g) = 3N+ cC(g) (2 +% (L7k) I Hys ugsl/, () A [by(5-£')] dg*
]:
1 2
+ [ (g ) Ry Dby (e'-g) Jdg'}) (F.1)
3
3 f g T
1= 0
1
- IE(I-ZE') A} [b,(g'-g)1de'}) (F.2)
9 n s
Jalg) = z + 3Nx + Z.(L/k) iil Hliugi{fo x(g*) p? [bi(g'sl)] dg '



J, (£)

Jg (£)

J7(€)

Jg(z)

+

+

i

1

[ x(g') AY [by(g'-£)1de"}
3
g n € -
(z-2) + 3Ny +z (L/k) ig__l H”u%h.{f0 y(g') AY [b,(g-¢")]de"
1

[ y&') Ay [b,(5")1de"}
£

3 i ¢ 1y 7 ' 1
z + E-(L/k) iil Hh.um.{f0 a(e') A; [b.(g-')] de

1
[ alg') A} [by(g'-¢)1de '}
£

n g
(z - 2) +-“;1(L/k) I Moyl f, B(e) B Do (e-g")] ds

1
[ b(e') A [by(e'€)Ide '}
13

1
3N+ C(g) [2+M fo(l-zs') € /(E-E")]

3N+ Cle) {2+ M [2 + (26-1) 2n (BT}
£

J7(8) - 3N
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(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)



